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Agenda
•  Hopper	  and	  Edison	  U-liza-on,	  Backlog,	  and	  Queue	  

Waits	  
•  Edison	  memory	  replacement:	  down-me	  

9/25/14-‐9/29/14	  
•  Carver	  SL6	  OS	  upgrade	  and	  CHOS	  
•  Hopper	  apsched	  errors	  
•  Update	  on	  the	  NESAP	  program	  and	  NERSC	  Applica-on	  

Readiness	  for	  Cori	  (NERSC-‐8)	  
•  Dirac	  and	  Carver	  re-rement	  reminder	  
•  NUGEX	  Elec-ons	  
•  Mini-‐Seminar:	  Programming	  for	  high-‐level	  and	  fine-‐

grained	  parallelism	  with	  MPI,	  OpenMP,	  &	  UPC	  
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Long Waits on Edison & Low Utilization on 
Hopper

•  By	  late	  June	  Edison	  wait	  -mes	  had	  increased	  
drama-cally	  

•  At	  the	  same	  -me	  Hopper	  u-liza-on	  was	  “low”	  (s-ll	  
close	  to	  80-‐90%!)	  

•  NERSC	  took	  ac-on	  on	  August	  19	  
–  Queue	  and	  run	  limits	  were	  relaxed	  on	  Hopper	  
–  Hopper	  regular	  charge	  jobs	  were	  discounted	  20%.	  
–  Run	  limit	  on	  Hopper	  low	  queue	  increased	  to	  48	  hours	  

-‐	  3	  -‐	  



Edison Backlog
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Edison Wait Times
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Hopper Utilization
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Edison Memory Replacement 
and Outage"
Zhengji Zhao

-‐	  7	  -‐	  



Edison Memory Replacement

•  REMINDER:	  Edison	  outage	  9/25/14	  to	  9/29/14	  
•  We’re	  upgrading	  memory	  to	  support	  1866	  MHz	  
memory	  clock	  speed	  (currently	  running	  at	  1600	  
MHz)	  

•  16.6%	  increase	  in	  memory	  bandwidth	  (streams)	  
•  Will	  require	  another	  par-al	  outage	  in	  early	  2015,	  at	  
which	  point	  the	  memory	  speed	  will	  be	  increased	  to	  
1866	  MHz	  
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SL6 and chos on Carver"
Lisa Gerhardt



Carver’s Current Status
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•  On	  Monday,	  August	  18th	  Carver’s	  base	  OS	  was	  
upgraded	  from	  Scien-fic	  Linux	  5.5	  to	  Scien-fic	  Linux	  
6.4	  

•  Expanded	  to	  offer	  two	  user	  environments	  
–  Users	  can	  choose	  which	  OS	  they	  want	  
–  ScienJfic	  Linux	  5.5	  (same	  as	  before)	  
–  ScienJfic	  Linux	  6.3	  
–  Done	  using	  CHOS	  

•  Carvergrid	  is	  s-ll	  on	  original	  OS,	  will	  be	  upgraded	  to	  
SL6	  and	  CHOS	  soon	  



What is CHOS?
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•  Sogware	  stack	  that	  allows	  support	  of	  many	  
different	  OS’s	  simultaneously	  

•  Can	  be	  thought	  of	  as	  essen-ally	  a	  chroot	  to	  an	  
alternate	  OS	  (CHroot	  OS)	  
–  File	  systems,	  batch	  integraJon	  
–  Seamless	  to	  the	  user	  

•  Successfully	  used	  on	  PDSF	  since	  2004	  



Why go to CHOS?
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•  Allows	  us	  to	  offer	  newer	  sogware	  while	  s-ll	  suppor-ng	  
older	  sogware	  

•  Newest	  versions	  of	  some	  of	  our	  more	  popular	  sogware	  
were	  not	  installable	  under	  SL5	  
–  Matlab,	  IDL	  

•  Greatly	  simplifies	  underlying	  architecture	  for	  system	  
administra-on	  
–  Can	  install	  soVware	  updates	  without	  perturbing	  user	  systems	  
–  System	  soVware	  has	  a	  smaller	  memory	  footprint	  on	  the	  
compute	  nodes	  

–  For	  Carver,	  were	  able	  to	  update	  underlying	  OS	  to	  ScienJfic	  Linux	  
6.4	  



Interacting with CHOS
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•  Users	  are	  in	  CHOS	  from	  the	  beginning	  of	  a	  session	  
–  ssh	  starts	  chos	  as	  part	  of	  logging	  in	  

•  Your	  CHOS	  is	  determined	  by	  a	  “.chos-‐carver”	  file	  in	  
your	  home	  directory	  
–  Current	  default	  is	  SL5,	  “sl5carver”	  in	  .chos-‐carver	  
–  SL	  6,	  “sl6carver”	  
–  No	  .chos-‐carver	  file,	  get	  the	  default	  CHOS	  

•  Use	  “chosenv”	  to	  see	  what	  CHOS	  you’re	  in	  

This	  is	  a	  
lower	  case	  L.	  



Changing CHOS
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•  Users	  can	  change	  CHOS	  at	  will	  
•  bash:	  	  

export	  CHOS=sl6carver	  
chos	  
bash	  –l	  

•  csh,	  tcsh	  
setenv	  CHOS	  sl6carver	  
chos	  

•  For	  long	  term	  running,	  it’s	  recommend	  to	  put	  
chosen	  CHOS	  in	  .chos-‐carver	  and	  get	  a	  fresh	  login	  



Submitting Jobs with CHOS
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•  Your	  batch	  jobs	  will	  run	  in	  whatever	  CHOS	  you’re	  in	  
when	  you	  submit	  

•  Possible	  to	  run	  in	  another	  CHOS	  
–  qsub	  -‐v	  CHOS=sl6carver	  <your_job.script>	  
–  Add	  “#PBS	  -‐v	  CHOS=sl6carver”	  to	  top	  of	  job	  script	  



Cron Jobs with CHOS
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•  If	  CHOS	  is	  not	  declared	  your	  cron	  jobs	  will	  run	  in	  
minimalist	  base	  CHOS	  
–  No	  modules,	  very	  limited	  soVware	  stack	  
	  
0	  */6	  *	  *	  *	  CHOS=sl6carver	  chos	  <your_cron>	  



Carver CHOS Documentation
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hkp://www.nersc.gov/users/computa-onal-‐systems/
carver/user-‐environment/	  



Future Plans
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•  Current	  default	  CHOS	  is	  sl5carver	  (same	  as	  before	  upgrade)	  
–  Users	  who	  do	  nothing	  end	  up	  in	  this	  CHOS	  

•  All	  new	  sogware	  installa-ons	  will	  be	  in	  sl6carver	  
•  Tenta-ve	  plan	  is	  to	  change	  the	  default	  to	  sl6carver	  on	  9/22	  

–  PRO:	  New	  users	  will	  automaJcally	  start	  in	  newer	  soVware,	  
Encourages	  exisJng	  users	  to	  upgrade	  to	  new	  soVware	  (SL	  5	  is	  
becoming	  less	  widely	  supported)	  

–  CON:	  Users	  will	  have	  to	  take	  acJon,	  either	  recompile	  their	  code	  or	  
adding	  a	  .chos-‐carver	  file	  to	  stay	  in	  SL	  5.5	  

•  We	  would	  like	  NUG’s	  recommenda-on	  about	  whether	  to	  
change	  the	  default	  to	  sl6carver	  (SL	  6.3)	  



Hopper scheduler issues 
placeholder
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NESAP & Application Readiness"
Harvey Wasserman
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NESAP Has Begun
•  Purpose:	  Get	  codes	  (more)	  ready	  for	  manycore	  systems	  
•  Accelerate	  applica-on	  performance	  
•  Produce	  science	  results	  on	  Cori	  
•  Collabora-on	  between	  code	  groups,	  NERSC,	  and	  vendors	  
•  Over	  50	  applica-on	  teams	  applied.	  
•  Twenty	  teams	  accepted	  for	  collabora-on,	  early	  access,	  deep-‐dive	  

consulta-on,	  early	  access	  to	  hardware	  
•  About	  25	  more	  accepted	  for	  early	  access	  to	  hardware	  
•  DOE	  program	  manager	  input	  and	  interest	  in	  results	  

–  Many	  highly	  qualified	  teams	  not	  accepted	  at	  this	  level	  

•  Accepted	  projects	  span	  science	  areas,	  representa-on	  in	  workload	  
(NERSC/DOE/elsewhere),	  current	  readiness	  for	  manycore	  architecture	  

•  See	  NERSC.gov	  -‐>	  News	  -‐>	  NERSC	  Center	  -‐>	  “NERSC	  Selects	  20	  NESAP	  
Code	  Teams”	  	  



20 NESAP Collaboration Codes
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NP	  (3)	  
Maris	  (U.	  Iowa)	  –	  MFDn	  	  
ab	  ini&o	  nuclear	  structure	  
Joo	  (JLAB)	  –	  Chroma	  	  
Lalce	  QCD	  
Christ/Karsch	  (Columbia/
BNL)	  –	  DWF/HISQ	  	  
Lalce	  QCD	  
	  

HEP	  (3)	  
Vay	  (LBNL)	  –	  WARP	  &	  IMPACT-‐
accelerator	  modeling	  
Toussaint	  (U	  Arizona)	  	  –	  MILC	  
Lalce	  QCD	  
Habib	  (ANL)	  –	  HACC	  for	  
cosmology	  

BES	  (5)	  
Kent	  (ORNL)	  –	  Quantum	  Espresso	  
Deslippe	  (NERSC)	  –	  BerkeleyGW	  
Chelikowsky	  (UT)	  –	  PARSEC	  for	  
excited	  state	  materials	  
Bylaska	  (PNNL)	  –	  NWChem	  
Newman	  (LBNL)	  –	  EMGeo	  for	  
geophysical	  modeling	  of	  Earth	  

BER	  (5)	  
Smith	  (ORNL)	  –	  Gromacs	  
Molecular	  Dynamics	  
Yelick	  (LBNL)	  –	  Meraculous	  
genomics	  
Ringler	  (LANL)	  –	  MPAS-‐O	  
global	  ocean	  modeling	  
Johansen	  (LBNL)	  –	  ACME	  
global	  climate	  	  
Dennis	  (NCAR)	  –	  CESM	  

	  

	  
ASCR	  (2)	  

Almgren	  (LBNL)	  –	  
BoxLib	  AMR	  
Framework	  	  
used	  in	  combusJon,	  
astrophysics	  
	  
TreboJch	  (LBNL)	  –	  
Chombo-‐crunch	  for	  	  
subsurface	  flow	  

	  
FES	  (2)	  

Jardin	  (PPPL)	  –	  M3D	  
conJnuum	  plasma	  
physics	  
Chang	  (PPPL)	  	  –	  XGC1	  
PIC	  plasma	  



Carver and Dirac Retirement Reminders

•  Carver	  will	  be	  re-red	  on	  August	  31,	  2015	  
–  TransiJon	  your	  code	  and	  workflows	  to	  Edison	  
–  Tell	  us	  if	  you	  can’t	  run	  on	  Edison	  or	  Hopper	  
–  Plans	  and	  advice:	  
hsp://www.nersc.gov/users/computaJonal-‐systems/carver/reJrement-‐plans/	  

•  Dirac	  will	  be	  re-red	  Friday,	  Dec.	  12,	  2014	  
–  Queues	  will	  stay	  open	  to	  almost	  the	  end	  to	  allow	  shorter	  
jobs	  to	  be	  run	  to	  the	  end.	  

–  2014-‐12-‐12:	  Dirac	  power	  off	  
•  10:00	  Queues	  disabled	  
•  17:00	  System	  power	  off	  
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NUGEX Elections

•  Eight	  seats	  on	  NUGEX	  are	  up	  for	  elec-on	  in	  
December	  2014	  	  
–  Fusion	  –	  2:	  Ethier,	  Vay	  
–  High	  Energy	  Physics	  –	  3:	  Borrill,	  Goslieb,	  Tsung	  
–  Nuclear	  Physics	  –	  2:	  Kasen,	  Savage	  
–  At	  large	  –	  1:	  Newman	  

•  Contact	  Frank	  Tsung	  (tsung@physics.ucla.edu)	  if	  
you	  are	  interested	  in	  running	  for	  one	  of	  these	  spots.	  
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Scott French"
NERSC User Services Group"
"
NUG Monthly Teleconference"
September 11, 2014

Evolution of 
parallel 
programming 
models in a"
legacy scientific 
application



Application: Global seismic tomography

•  Scien-fic	  goal:	  To	  beser	  understand	  the	  evoluJon	  and	  interior	  
dynamics	  of	  our	  planet	  by	  imaging	  its	  deep	  structure	  

•  Technique:	  Waveform	  tomography	  
–  Objec-ve:	  Model	  of	  material	  properJes	  
–  Observa-ons:	  Seismograms	  of	  natural	  

earthquakes	  (hundreds)	  
–  Predic-ons:	  Numerical	  simulaJons	  of	  	  

seismic	  wave	  propagaJon	  

•  Non-‐linear	  inverse	  problem	  
–  PredicJon	  (spectral	  finite	  element)	  is	  expensive:	  500K	  –	  1M	  hours	  

•  Itera-ve	  op-miza-on	  method	  should	  converge	  quickly	  
–  Typically	  want	  ≤	  10	  iteraJons	  (two	  phases	  each:	  predicJon,	  assimilaJon)	  
–  TradiJonally	  use	  a	  Gauss-‐Newton	  scheme	  in	  assimilaJon	  phase	  
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Optimization via Gauss-Newton 

•  Typical	  problem	  size:	  Nm	  =	  1e4	  –	  2e5	  earth-‐model	  parameters	  
–  FactorizaJon	  of	  Gauss-‐Newton	  Hessian	  (Nm	  x	  Nm)	  feasible	  in	  this	  regime,	  avoids	  

matrix-‐free	  (too	  many	  maps	  over	  data)	  or	  quasi-‐Newton	  (too	  many	  iteraJons)	  

•  How	  to	  assemble	  the	  Gauss-‐Newton	  Hessian	  GTG?	  
–  G:	  matrix	  of	  parJal	  derivaJves	  relaJng	  predicJons	  to	  the	  earth	  model	  

•  Size:	  dimension	  of	  data	  (1e7)	  x	  number	  of	  parameters	  (Nm)	  

–  Each	  datum	  (a	  seismogram)	  supplies	  one	  column-‐strided	  panel	  of	  G 
–  Unfortunately,	  G	  is	  non-‐sparse	  and	  too	  large	  to	  form	  explicitly	  

•  Solu-on:	  Form	  GTG	  directly	  
–  Reduces	  storage	  requirements	  

significantly	  over	  forming	  G 
–  Repeated	  indexed	  augmented	  	  

assignment	  (+=)	  into	  GTG 
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+=

Never explicitly
formed

BLAS
GEMM

GtG[ix,ix] += GtG_i[:,:];

Pseudocode:

Fig. 1. A schematic illustration of the strided-slice update operation described
in the text.

Thus, the underlying computational kernel of our Jaco-
bian estimation reduces to a series of path integrations: one
integration for each choice of mode pair (k, k′) and source-
receiver path (corresponding to a single seismogram used in the
inversion). The overall cost scales as O

(

Nmr

√

Nmθφ
NSRf4

)

where Nmr and Nmθφ
correspond to the radial (depth) and

lateral (latitude-longitude) dimensions of m (i.e. the overall
dimension of m is Nm = NmrNmθφ

), NSR is the number of
source-receiver paths, and f is the maximum frequency con-
sidered in the wavefield (the number of coupling-mode pairs
(k, k′) grows as f4). A detailed review of mode perturbation
theory in waveform inversion may be found in [18].

2) Practical considerations: When considering realistically
large numbers of data Nd = dimd, where Nd ≫ Nm,
the Jacobian G is in general too large to form explicitly.
Instead, we form the Nm×Nm Hessian estimate GTG and the
(negative) misfit gradient vector GT [d− g(m)] directly (here,

we have absorbed C
−1/2
d

into G and d−g(m) for notational
convenience). Typically, for each datum i, corresponding to
a particular source-receiver path and recorded seismogram,
NACT (Section II-B1) yields a single column-strided panel
of G, denoted G(i). The particular striding pattern arises
from the application of the stationary phase approximation,
which limits the non-zero elements of G to model parameters
encountered along the source-receiver great circle, and thus
depends entirely on the source-receiver geometry. For each
datum i of size k (the number of time samples), G(i) is k×n,
where n is typically an order of magnitude smaller than Nm

(namely, n ∝ Nmr

√

Nmθφ
), while k varies independently

from n and is at least an order of magnitude smaller in practice.

Thus, for each i, there is an n × n symmetric update
GT

(i)G(i) that must be merged into the full GTG. The partic-
ular merge operation is simply addition – namely, the additive
“augmented assignment” operator += – and the mapping
between elements is given by a strided slicing operation; or,
in pseudocode: GtG[ix,ix] += GtG_i[:,:] where ix is a
suitable indexing array (Fig. 1). Updates to the misfit gradient
vector for the particular contribution from datum i follow a
similar pattern, though clearly only in one dimension.

3) Parallel implementation with replication: Each NACT
calculation, corresponding to one particular datum, is wholly
independent of every other. Thus, NACT-based Hessian and
gradient estimation is data-parallel and proceeds in two phases:
(1) a map operation over the waveform data d and correspond-

ing predictions from numerical simulations g(m), resulting
in per-datum Hessian and gradient contributions; and (2) a
parallel reduction operation, yielding a single estimate of
the full Hessian and gradient. Our particular implementation
adopts a mixed OpenMP/MPI programming model, appro-
priate for modern multi-core HPC platforms. In particular,
the outermost level of parallelism corresponds to MPI tasks,
typically distributed among the available compute resources
one-to-one with NUMA domains, with additional efforts to en-
sure strict memory containment and therefore enhance locality
when supported. All MPI tasks are equivalent (executing in a
SPMD fashion), with the exception that a designated root task
spawns a separate coordinator Pthread responsible for work
distribution (assigning data to the pool of MPI tasks).

Work is assigned to MPI tasks in blocks (more than one
datum) reflecting locality of the underlying data (observations
and simulation output) on disk. Each block is processed in
parallel by the OpenMP thread team associated with each
MPI task (one datum per thread) and occupying the remaining
available CPU cores. Up to the limit that the full Hessian
estimate can fit in memory, we adopt a replicated approach
to reduction of updates, motivated by the assumption that
the underlying merge operation (addition) can be considered
associative and commutative for our purposes (not strictly true
for floating-point arithmetic). Each MPI task maintains its own
copy of the Hessian and gradient, to which the OpenMP thread
team applies per-datum updates (protected by a mutex). Once
all blocks have been processed, the second level of reduction
proceeds by summing all replicated Hessian and gradient
copies across MPI tasks. Thereafter, the results are saved to
disk, either by a single root task or a collective write via MPI-
IO if large enough to warrant it (with collective buffering for
improved aggregate throughput on parallel filesystems).

C. Hybrid inversion in practice

1) Inversion setup and workflow: In our recent global-
scale imaging efforts [1], [2], the dataset is comprised of tens
of thousands of time-discretized seismograms recorded from
hundreds of earthquakes distributed around the globe, typically
yielding a d of dimension ∼ 107. The model m characterizes
3D variations of seismic shear-wave velocity in the earth’s
mantle, which is expressed in a spline basis of 104 − 105 free
parameters (see [1], [2] for parameterization details).

Given an iterative model estimate mi, we use a spectral
finite-element method to compute g(mi) – chosen for its
excellent numerical-dispersion behavior and natural treatment
of the free-surface boundary condition, among other attractive
properties [7], [9]. While small in isolation, each occupying
200-300 CPU cores under typical production configurations,
these spectral element simulations are numerous: requiring
an independent simulation for each earthquake and iterative
model estimate. This stands in contrast to the data assimilation
and Hessian computation described in Section II-B3, which is
cheap in comparison, is run only once per model iteration, and
scales trivially. As noted in Section II-A, the use of a quickly
converging Newton-like optimization scheme leads to a small
total number of iterations – typically ∼ 10 in practice. For
reference, the overall workflow for iterative optimization of m
is summarized in Fig. 2.

Index	  i	  is	  one	  datum	  



Evolution of programming models
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more	  
data	  

	  
higher	  

resolu/on	  

Late	  1990’s	   SequenJal	  soluJon	  
Mid	  2000’s	   Parallelized,	  replicated	  Hessian	  esJmate	  

•  MPI	  for	  work	  coordina&on	  and	  Hessian	  reduc&on	  
2010	   One	  MPI	  process	  /	  Hessian	  per	  NUMA	  domain	  

•  OpenMP	  threads	  compute	  per-‐waveform	  updates	  
•  S&ll	  MPI	  for	  work	  coordina&on	  and	  Hessian	  reduc&on	  

Late	  2013	   Hessian	  no	  longer	  fits	  on	  a	  single	  compute	  node	  …	  

•  Requires	  a	  distributed	  solu-on:	  Must	  support	  assembly	  from	  
concurrent	  updates	  with	  data-‐dependent	  indexed	  access	  paserns	  

•  A	  number	  of	  simplifying	  assump/ons	  can	  be	  made	  
–  Updates	  are	  independent	  (data	  parallel),	  commuta-ve,	  and	  associa-ve	  
–  No	  loads	  /	  gets	  of	  distributed	  matrix	  elements	  during	  assembly	  

•  State	  only	  needs	  to	  converge	  once	  all	  updates	  are	  “commised”	  	  
•  ThereaVer,	  dependent	  computaJons	  can	  start	  (e.g.	  ScaLAPACK)	  



Implementation: Goals and requirements

•  Many	  implementa-on	  strategies,	  a	  scalable	  solu-on	  should:	  
–  Exploit	  simplifying	  assump-ons	  
–  Overlap	  computaJon	  and	  communicaJon	  
–  Minimize	  synchroniza-on	  

•  Load	  balance	  is	  difficult	  to	  achieve	  –	  no	  bulk	  synchronous	  exchange	  
•  No	  coordinaJon	  aside	  from	  dynamic	  work	  distribuJon	  

•  Requirements	  for	  a	  distributed	  matrix	  abstrac-on	  
–  Support	  for	  block-‐cyclic	  etc.	  distribuJons	  (ScaLAPACK,	  MPI-‐IO)	  
–  Should	  fit	  seamlessly	  into	  the	  producJon	  applicaJon	  

•  OpenMP	  and	  MPI	  interoperability	  
•  >	  95%	  of	  applicaJon	  is	  in	  C,	  would	  prefer	  to	  stay	  in	  this	  language	  family	  

–  Ensure	  isolaJon	  of	  concurrent	  +=	  updates,	  parameterized	  by	  indexed	  strided-‐
slicing	  operaJons:	  e.g.	  GtG[ix,ix]	  +=	  GtG_i[:,:];	  
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Implementation: Design and interface

•  Solu-on	  adopts	  the	  Par--oned	  Global	  Address	  Space	  model	  
–  MoJvated	  by	  fast	  non-‐blocking	  remote	  memory	  access	  
–  Chose	  UPC++,	  a	  set	  of	  PGAS	  extensions	  to	  C++	  (Zheng,	  et	  al.	  IPDPS’14)	  
–  Modeled	  largely	  on	  UPC	  (and	  others,	  e.g.	  X10),	  but	  adds:	  

•  Dynamic	  remote	  memory	  management	  (allocate	  /	  free	  on	  remote	  target)	  
•  Asynchronous	  remote	  task	  invoca&on	  (schedule	  code	  to	  run	  on	  remote	  target)	  

–  Interoperable	  with	  MPI	  and	  OpenMP	  (usual	  caveats	  on	  mixing	  RTs)	  

•  Distributed	  matrix	  abstrac-on:	  `ConvergentMatrix`	  
–  In	  a	  nutshell,	  two-‐phase	  one-‐sided	  updates:	  

•  Phase	  I:	  Buffer	  allocated	  on	  owner	  (target);	  +=	  r.h.s.	  data	  copied	  to	  target	  
•  Phase	  II:	  Async	  task	  applies	  update	  on	  target	  in	  isolaJon	  (frees	  buffer)	  

–  Simple	  interface:	  update	  ini&ates	  update,	  commit	  ensures	  comple&on	  of	  prior	  
updates	  (collec&ve),	  and	  get_local_data	  returns	  ptr	  to	  local	  matrix	  data	  
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Implementation: Design and interface
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GtG.update( GtG_i, slice_idx_i );Jacobian
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GtG.commit(); // barrier
// fetch local pointer 
float *mat = GtG.get_local_data();
// ScaLAPACK
// MPI-IO collective write

Hessian
update

Binned
updates

async executes update async executes update

Manages
matrix

abstraction

Perform
NACT

computation

Eventually on all UPC++ processes ...

Process invoking update()

Fig. 3. A schematic illustration of how the ConvergentMatrix abstraction is used in our production application, focused on the path taken by a single
Hessian update and highlighting the roles of different coexisting parallel programming models / tools (UPC++, OpenMP, and MPI).

C. Challenges

Here, we discuss two challenges that arose during the
development and deployment of ConvergentMatrix, along
with the particular solutions we adopted.

1) Reasoning about progress: One of the more fundamen-
tal challenges encountered in developing ConvergentMatrix

is reasoning about progress: in terms of both execution of the
asynchronous update tasks and remote memory management.

Execution of asynchronous tasks
As noted above, asynchronous task invocation and remote
memory management operations in UPC++ both require GAS-
Net to poll the network for new messages on the target side and
execute the associated AM handlers. While GASNet implicitly
calls gasnet_AMPoll (which services the network, trigger-
ing the associated handlers) in numerous message-sending
operations [21], reasoning about where, when, and if at all,
additional calls to gasnet_AMPoll are necessary is non-trivial
(in addition to the limited number thereof internal to UPC++).
Indeed, GASNet is specifically designed for such operations
to occur at the implementation level of the supported PGAS
language, not at the application programmer level.

Further, even when AM handlers for asynchronous tasks
are run on the destination process, UPC++ only enqueues
these tasks to run. As described above in Section III-B2, each
participating process must periodically ensure that update tasks
enqueued by remote processes are executed. Initially, there was
no support in UPC++ for querying or draining the local task
queue: only upcxx::progress, which calls gasnet_AMPoll
and subsequently executes a single task from the queue. This
functionality was added to UPC++ as part of the development
of ConvergentMatrix and has subsequently been merged
into the former as the peek and drain functions.

Implications for memory management
Pausing to make progress on the enqueued update tasks
has additional implications for memory overhead, as the
update tasks are responsible for freeing their own yet-to-
be-applied update data (see Section III-B3). Failure to pe-
riodically free these buffers can lead to runtime failures on

calls to upcxx::allocate due to memory exhaustion on
the target process. One potential solution would be the ad-
dition of a backpressure mechanism: for example, whereby
upcxx::allocate would be permitted to return a failure
code, indicating that it should be retried later on. During the
pause, the calling process could spin in upcxx::progress to
ensure execution of AM handlers and enqueued tasks, though
this may not be necessary to ensure progress if other measure
are taken (see Aiding progress). This functionality (failure in
upcxx::allocate without aborting execution) has not been
introduced into UPC++, but could easily be in the future.

Aiding progress
We explored two approaches for mitigating the issues raised
above. The first approach is simply to set the interval be-
tween upcxx::drain calls internal to the update method
to one (described in Section III-B2), requiring that every
round of asynchronous update tasks is accompanied by a call
to upcxx::drain on the initiating side. Assuming approx-
imate load-balance between ConvergentMatrix instances,
this should ensure that progress is made on enqueued tasks
(and AM handlers) at roughly the same rate they are initiated.

However, this assumption is at odds with the asynchronous
design of the abstraction, as well as numerous real-world
considerations (imperfect load balance, non-determinism in
IO rates, etc.). Though additional upcxx::drain calls may
be invoked while a UPC++ process waits for new Hessian
updates from the OpenMP thread team, there are numerous
other operations where such calls cannot easily be interleaved.
To this end, we introduced an additional “progress” thread,
responsible for periodically invoking upcxx::drain. While
this solution requires locks to prevent concurrent calls to
UPC++ routines that alter the task queue, this critical section of
calls within the update method is compact, and the additional
code complexity is minimal (less than 30 SLOC). We found
this approach to be effective at ensuring progress despite the
asynchronous nature of update operations, thereby enabling
both high update throughput (rapid execution of update tasks)
and efficient memory management (requiring a smaller re-
served fast segment for GASNet, as well as less chance of

•  Example	  follows	  the	  path	  of	  a	  single	  matrix	  update	  
•  ConfiguraJon:	  One	  process	  per	  NUMA	  domain,	  but	  now	  UPC++	  

An	  illustra-ve	  example	  



•  Approach:	  Abstract	  away	  applica-on	  
–  Test	  framework	  generates	  syntheJc	  updates:	  RealisJc	  Hessian	  sizes	  (up	  to	  

next-‐gen	  ≥2.5TB),	  access-‐paserns,	  update	  rates,	  concurrency	  levels	  

Evaluation: Strong scaling
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Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P ) =
T (Pmin) · Pmin

T (P ) · P
where T (P ) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P ) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P ) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P ) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P ) re-
mains consistently above 85% – indicative of nearly complete

ER(P ) =
T (P0)

P/P0 · T (P )

•  GNU	  Compilers	  4.8.2	  (-‐O3)	  
•  GASNet-‐1.22	  /	  UPC++	  master	  

In	  terms	  of	  rela-ve	  
parallel	  efficiency:	  
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Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P ) =
T (Pmin) · Pmin

T (P ) · P
where T (P ) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P ) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P ) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P ) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P ) re-
mains consistently above 85% – indicative of nearly complete

Strong	  Scaling	  (Edison)	  



Alternative implementation: MPI-3 RMA
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•  Func-onal	  requirements	  met	  with	  MPI-‐3	  RMA	  (similar	  #	  SLOC)	  
–  MPI_Accumulate	  +	  MPI_SUM	  and	  passive	  MPI_Win_lock	  /	  unlock	  

•  Pro:	  UPC++	  /	  GASNet	  RTs	  not	  needed	  
•  Pro:	  Elemental	  atomicity:	  MPI	  RT	  has	  
more	  freedom	  in	  scheduling	  updates?	  

•  Con:	  Elemental	  atomicity:	  Element-‐	  
wise	  concurrency	  control?	  

•  Con:	  Black	  box:	  Design	  tradeoffs	  sub-‐	  
op&mal	  for	  our	  use	  case?	  (e.g.	  locality	  
implica&ons	  of	  true	  passive	  target)	  

•  Right:	  weak	  scaling	  (dataset	  size)	  
–  64	  updates	  /	  NUMA	  domain	  
–  Matrix	  size	  held	  fixed:	  Nm	  =	  2.2e5	  	  
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Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P ) =
T (Pmin) · Pmin

T (P ) · P
where T (P ) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P ) s ER(P ) Nup T (P ) s ER(P )
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P ) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P ) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P ) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P ) re-
mains consistently above 85% – indicative of nearly complete

Weak	  Scaling	  (Edison)	  

TABLE II. WEAK SCALING FOR Nm = 2.2× 105 ON UP TO 12,288
CORES OF A CRAY XC30: UPC++ AND MPI-BASED IMPLEMENTATIONS.

UPC++ MPI

P Cores Nup T (P ) s T (P ) s
16 192 1024 591.18 fail
64 768 4096 592.50 1452.24

256 3072 16384 597.24 1620.22
1024 12288 65536 609.96 3560.28

overlap of computation and communication. In our application,
Nm is constrained a priori by the physics of wave propagation
(namely, the attainable resolution) and held fixed for multiple
inversion iterations. Thus, strong scaling is a critically impor-
tant axis of evaluation for our application. Further, these tests
clearly demonstrate that ConvergentMatrix readily scales to
anticipated next-generation problem sizes.

2) Weak scaling: For our application, it is difficult to define
a meaningful notion of weak scaling, tied to a nominal fixed
problem size per process while scaling global problem size
by enlarging the number of processes. Two natural axes along
which to scale global problem size are matrix dimension Nm

and total quantity of data Nup. Growing Nm while retaining a
fixed-size partition of the distributed matrix per process does
not retain a fixed per-process problem size, as the dimension of
each update must grow accordingly (Section II-B2). Holding
Nm fixed while scaling Nup (adding processes, each perform-
ing a fixed number of updates), does not maintain the same
matrix partition size per process, but does maintain the same
update dimension and per-update communication volume.

Among these two options, we believe the second (scaling
Nup) may be more informative. Importantly, though the per-
update problem size is fixed, the total volume of concurrent
communication increases with P , as does the cost of the
binning / flushing operation. Further, unlike the fixed total
Nup runs used in assessing strong scaling, these experiments
are comparatively insensitive to the effect of spin-up time
fraction (which is the same for all P ). Thus, variation in
T observed in these runs is primarily due to communication
overhead inherent to our implementation, therefore yielding
a more informative notion of problem size for evaluating the
communication model. In Table II and Fig. 4B, we show weak
scaling for an Nm of 2.2×105 in terms of time to solution T ,
for a range of P and fixed number of updates per-process (64).
We find that T stays nearly constant over a wide range of core-
(192–12288) and corresponding update-counts (1024–65535),
gaining only 3% at the largest P (and problem size), indicative
of near-total overlap of computation and communication. This
is confirmed when we examine Fig. 4C, showing per-process
aggregate time breakdowns for calls to the update method:
the totals are considerably below computation time for the test
case considered (64 updates will be computed by the OpenMP
threads in ∼ 570 s for this Nm). Further, increases in aggregate
update time are mostly driven by matrix-element binning, not
the UPC++ update-movement operations.

B. Comparison with MPI-3 one-sided

For comparison, we designed a second implementation,
based on MPI-3 one-sided remote memory access (RMA)
operations. While the shortcomings of MPI-2 for emulat-
ing PGAS-like functionality are well known [24], MPI-3
largely addresses these issues. The particular semantics of

MPI_Accumulate fit well with our requirements: concurrent,
element-wise atomic updates to remote memory using prede-
fined commutative merge operations (e.g. MPI_SUM). These are
weaker atomicity guarantees than the UPC++ version (which
applies the entire update atomically), that we hoped could lead
to performance advantages when using MPI-3 RMA.

In our re-implementation of ConvergentMatrix, we use
per-target MPI window objects, allowing fine control over
access epochs for distributed-matrix storage arrays. Access is
managed with the passive MPI_Win_lock / unlock pattern,
requiring minimal synchronization and no target-side exposure
management. Locks are acquired for each accumulate call in
exclusive mode, after initial tests found performance advan-
tages over shared locks, possibly due to implicit coordination
between concurrent updates and poor locally when updates
from distinct origins are interleaved. We also tried a single
passive access epoch with shared-mode locks, i.e. opened by
the first update call and closed by commit, in conjunction
with per-accumulate MPI_Win_flush_local calls, but again
found performance poorer than the exclusive-lock approach.
Finally, because individual binned updates are arbitrarily struc-
tured, we define per-update MPI indexed derived types.

As noted in Section IV-A2, our weak-scaling tests are par-
ticularly sensitive to the volume of concurrent communication,
and thus provide a useful framework for assessing different
communication models. We repeated these tests for the MPI-
based implementation, using the same compiler configuration
and Cray MPT 6.2.0 (based on MPI-3 compliant MPICH
3.0.3). These partial results are shown in Table II and Fig. 4B.
Namely, the use of a 32-bit int for window offsets (indexing),
defined in the MPI standard, severely limits window size and
places a lower bound on P for a given Nm (here, the P = 16
case leads to overflow). This is not a problem for the UPC++
implementation, as element indices may be parameterized in
any integer type (default: 64-bit). In general, we find that time
to solution is larger than that seen for UPC++ and weak scaling
is comparatively poor, with 11% performance degradation
between the P = 64 and 256 cases, and further degradation to
145% of the P = 64 case by P = 1024. It is clear that there
are both functionality and scalability / performance advantages
to the UPC++-based implementation.

We further believe that there is little advantage to choosing
MPI from a programmer productivity perspective. In terms of
code complexity, UPC++ and MPI require analogous initial-
ization steps (exchanging upcxx::global_ptr references vs.
collective window creation), and similar quantites of code are
needed to implement updates with upcxx::async vs. MPI
RMA (92 and 75 SLOC, respectively). While UPC++ required
additional care in reasoning about progress (Section III-C), it
was considerably simpler to reason about performance (relative
to MPI, where details critical to debugging comparatively poor
performance are hidden in the runtime). Indeed, examining
the MPI_Accumulate implementation in foMPI [25], a highly
optimized RDMA-aware MPI-3 implementation, the style of
bulk floating-point accumulate that we require involves multi-
ple phases of data-movement (target-window lock, RDMA-get,
origin-side accumulate, RMDA-put, unlock), in contrast to our
single phase. Further, this limitation has its roots in design of
the API itself, which encourages a truly passive target (e.g.
avoiding extensive target-side buffering in the runtime, which

**	  Overflow	  in	  MPI_Type_Indexed	  

•  GNU	  Compilers	  4.8.2	  (-‐O3)	  
•  Cray	  MPI	  6.2.0	  (MPI-‐3)	  
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•  PGAS-‐based	  solu-on	  enables	  us	  to	  solve	  problems	  we	  could	  not	  
have	  akempted	  otherwise	  
–  Yielded	  the	  first-‐ever	  seismic	  model	  Earth’s	  mantle	  obtained	  using	  SEM-‐based	  

waveform	  tomography	  (French	  and	  Romanowicz,	  2014,	  GJI	  accepted)	  
–  Ready	  to	  scale	  to	  the	  next	  generaJon	  of	  problem	  size	  

•  Broader	  implica-ons	  for	  HPC	  
–  IllustraJve	  example:	  Progressive	  adop/on	  of	  mixed-‐model	  parallelism	  to	  

confront	  /	  exploit	  architectural	  changes	  and	  adapt	  to	  changing	  scienJfic	  goals	  
•  {MPI}	  	  ⇾	  	  {MPI	  +	  OpenMP}	  	  ⇾	  	  {MPI	  +	  OpenMP	  +	  PGAS}	  

–  ApplicaJon	  fits	  into	  an	  increasingly	  common	  mo/f:	  Data-‐driven	  concurrent	  
computaJons	  that	  update	  shared	  global	  state	  with	  complex	  access	  paserns	  

–  UPC++	  feature-‐set	  enables	  novel	  solu/ons	  to	  such	  problems	  and	  an	  provides	  
an	  easy	  onramp	  to	  adop/on	  of	  the	  PGAS	  model	  
•  Familiar	  /	  popular	  language	  (C++),	  interoperability	  with	  MPI	  and	  OpenMP,	  etc.	  
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•  Progress	  in	  the	  asynchronous	  task	  queue	  
–  When	  are	  asynchronous	  tasks	  actually	  executed?	  

•  ImplicaJons	  for	  memory	  management:	  When	  will	  the	  receive	  buffers	  be	  freed?	  
–  SoluJons	  for	  finer	  control	  over	  task	  queue:	  

•  peek()	  /	  drain()	  for	  querying	  /	  flushing	  the	  queue	  
•  Progress	  thread:	  runs	  in	  the	  background,	  execuJng	  remotely	  enqueued	  tasks	  

•  Progress	  in	  GASNet	  
–  GASNet	  AcJve	  Messages	  handlers	  required	  for:	  (a)	  tasks	  to	  enter	  queue	  on	  

target	  and	  (b)	  remote	  memory	  allocaJon	  on	  target	  (not	  for	  copy)	  
•  AM	  polling	  within	  UPC++	  (and	  implicitly	  within	  GASNet	  ops)	  

–  Progress	  thread	  assists	  GASNet	  progress	  (peek()	  induces	  polling)	  
•  Poten-al	  for	  deadlock	  

–  CommunicaJons	  operaJons	  separate	  across	  runJmes	  
•  Separate	  in	  &me	  or	  concurrent	  but	  handled	  by	  different	  threads	  

–  Low	  probability	  of	  classic	  deadlock	  problem	  when	  mixing	  parallel	  RTs	  



More on MPI implementation
•  Why	  not	  MPI_Win_flush?	  

–  SJll	  need	  to	  lock	  to	  start	  passive	  epoch;	  either	  
•  Redundant	  lock	  /	  unlock	  with	  MPI_LOCK_EXCLUSIVE	  
•  Global	  (whole	  run)	  lock	  /	  unlock	  with	  MPI_LOCK_SHARED	  (slow!)	  

•  Why	  not	  MPI_Raccumulate	  for	  “async”	  update?	  
–  SJll	  need	  to	  check	  on	  it;	  again	  either:	  

•  Redundant	  lock	  /	  unlock	  with	  MPI_LOCK_EXCLUSIVE	  
•  Slow	  global	  epoch	  lock	  /	  unlock	  with	  MPI_LOCK_SHARED	  

•  How	  about	  faster	  memory?	  
–  Already	  use	  MPI_Alloc_mem	  
–  Maybe	  MPI_Win_allocate?	  

•  Good	  quesJon!	  Trying	  that	  
•  How	  about	  window	  op-miza-ons?	  

–  Say,	  using	  accumulate_ops	  =	  same_op?	  
•  Trying	  that	  too!	  
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Thank you.
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